Kinetics Theory: Haber-Bosch and Steam Reforming

Edward Beck, Yasmi Chibber, Adam Morad, Khushi Shah, Owen Sotak

Why is Kinetics Important?

Kinetics is the study of the rates and processes of chemical reactions

Chemical engineers view kinetics from the lens of:

- Temperature
- Pressure
- Composition
- Flow rates
- Reynolds number

Optimize:

- Efficiency of reactors
- Concentration of desired product
- Profit from chemical reactions

Core Kinetics Concepts

The study of kinetics fundamentally relies on the reaction mechanism and its elementary steps $\Delta = C$

$$A = C$$

$$C + B ≈ D (rds)$$

$$A + B ≈ D$$

Following the Power Law: $r = kC_BC_C$

 Power Law can often *oversimplify* the kinetics due to it ignoring the reversibility of a reaction, as well as potential unidentified intermediates/elementary steps

Reactor Types and Design Equations

\frown	Flow Rate, Q	Reactor Type	Mole Balance Accum = In - Out + Gen	Algebraic Form	Integral Form	Reaction Type	Example Uses
Reaction Time, t	Residence Time, t	Batch Reactor	$\frac{dC_{j}/dt=0 - 0 + r_{j}}{C_{A}^{j}dX_{A}/dt=-r_{A}}$	-	$t = C_{A0}^{*} - r_A^{\dagger} dX_A$	Homogeneous	Bioreactors, polymerization
(a)	(b)	Continuous Stirred-Tank Reactor (CSTR)	0=F _{j0} -F _j +Vr _j	V=F _{A0} X _A -r _A	-	Homogeneous	Petrochemicals , gas-phase reactions
Flow Rate, Q	Residence Time, t Reaction Rate, k	Plug Flow Reactor (PFR)	$dF_{i}/dV=r_{j}$ $F_{A0}(dX_{A}/dV)=-r_{A}$	-	V=F _{A0} *J-r _A dX _A	Heterogeneous	Steam reforming, ammonia synthesis]

Laboratory Demonstration of Abiotic Technologies for Removal of RDX from a Process Waste Stream - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Simple-block-diagrams-of-three-basic-reactor-typesa-Batch-reactor-b-Continuous fig4 229048836 [accessed 2 Feb 2025]

Steam Reforming (History)

The Billingham sit produced syngas from coke gasification (40% efficiency, high energy loss).	te Introduced Ra ring catalysts (better gas flo and ZnO desulfurizatio		chig ')	ICI developed SRATIO modeling to optimize steam-to-carbon (S:C) ratios and prevent carbon formation	
	1936	¶	1960-1980s	•	2000s-Present
Before 1928	•	1950s	•	1980-2000s	•
ICI built the first large methane reformer, used early nickel catalysts, but faced sulfur poisoning issues.		Focused on scaling up reformers to increase hydrogen production, efficiency, and durabili through naphtha reform and modular designs.	ty ming	Concentrating Ni on the outer layer improved reaction rates while reducing metal waste.	

Process

• Fuel

- Mainly methane (natural gas); can also use ethanol, propane, or naphtha.
- Oxidant
 - Steam (H₂O) reacts with methane to produce hydrogen and carbon monoxide.
- Catalyst & Reactor
 - Nickel (Ni) on alumina (Al₂O₃) catalyst is packed into a fixed-bed reactor.

Johnson Matthey. (n.d.). Eighty years of steam reforming. Retrieved from https://fredstarr.com/wp-content/uploads/ICI-Steam-Reformer-History-Johnson-Matthey.pdf

Process Conditions

1. Methane Pre-treatment

a. Natural gas is desulfurized to remove sulfur compounds that poison catalysts.

2. Primary steam reforming rxn

a. $CH_4 + H_2O -> CO + 3H_2$

i. Very endothermic, High temperatures (700-1100 °C)

ii. Rate Limiting Step: activation of methane on Ni Catalyst surface

$$R_{smr} = 1.42 \times 10^3 \cdot \exp(-1.56 \times 10^5 / R_0 T) (P_{CH_4})^{1.29} (P_{H_2O})^{-0.53} \pmod{/m^2/s}$$

3. Water - Gas Shift Reaction

C.

- a. $CO + H_2O -> CO_2 + H_2$
- b. Exothermic, low temperature favors H₂ production -> Le Chatelier's principle

$$r_{\rm CO} = 2.96 \times 10^5 \exp\left(-\frac{47400}{RT}\right) \left(P_{\rm CO} P_{\rm H_2O} - \frac{P_{\rm CO_2} P_{\rm H_2}}{K_{\rm e}}\right)$$

- d. Methanation (Reverse Reaction, Unwanted) -> CO + 3H₂ -> CH₄ + H₂O
 - . At lower temp. -> competes with SMR

а.

4. H₂ separation CO₂ removed via absorption or membrane separation

OpenAI. (2024). ChatGPT (February 1 version) [Large language model]. Retrieved from <u>https://openai.com</u> Choi, Y., & Stenger, H. G. (2003). Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen. *Journal of Power Sources*, 124(2), 432-439. https://doi.org/10.1016/S078-7753(0300614-1

Steam Reforming vs Other H₂ Production Methods

Method	Process	Efficiency (%)	CO ₂ Emissions	Scale
Steam Reforming (SMR)	$CH_4 + H_2O \rightarrow H_2 + CO$	65–75%	High (unless carbon capture is used)	Large-scale
Electrolysis	$H_2 O \rightarrow H_2 + O_2$	60-80%	Zero (if renewable energy is used)	Small to medium
Ammonia Cracking	$\rm NH_3 \rightarrow \rm H_2 + \rm N_2$	60-70%	Low	Medium
Biological Hydrogen	Microbial fermentation	10-30%	Low	Small-scale

Haber-Bosch Process (History)

- Revolutionized the agricultural industry in 1913
- Haber dealt with NH3 production and Bosch dealt with scaling production
- More than 159 million tons of ammonia a produced yearly
- Population growth to current level would not be possible without this

Overall reaction:

N2 (g) + O2 (g) <-> 2 NH3

Langmuir adsorption model: $K_A = \Theta_A^m / P_A (1-\Theta total)^m$

 θ_A : fraction of catalyst sites occupied by species A

 P_A : partial pressure of A

m : exponent and stoich coefficient

 $1-\theta_{total}$: fraction of free sites on the catalyst

 K_{A} : adsorption equilibrium constant, depends on temperature and catalyst properties

How to determine m:

$$N_{2}(g) + 2 * <=> 2N *$$

$$H_{2}(g) + 2 * <=> 2H *$$

$$\Theta_{total} + \Theta_{empty} = 1$$

$$K_{A} = \Theta_{A}^{m} / P_{A}(\Theta_{empty})^{m}$$

$$K_{N} = \Theta_{N}^{2} / P_{N}(\Theta_{empty})^{2}$$

$$K_{H} = \Theta_{H}^{2} / P_{H}(\Theta_{empty})^{2}$$

$$\Theta_{N} = K_{N}^{1/2} P_{N}^{1/2} \Theta_{empty}$$

$$\Theta_{H} = K_{H}^{1/2} P_{H}^{1/2} \Theta_{empty}$$

empty

N *+ 3H * <=> NH3 * $\Theta_{NH_3} = K_{NH_3} P_{NH_3} \Theta_{empty}$ $\Theta_{total} = \Theta_N + \Theta_H^3 + \Theta_{NH}$ $1 = \Theta_{empty} + \Theta_N + \Theta_H^3 + \Theta_{NH_2} = \Theta_{empty} + K_N^{1/2} P_N^{1/2} \Theta_{empty} + K_H^{3/2} P_H^{3/2} \Theta_{empty}^3 + K_{NH_2} P_{NH_2}^{NH_2} \Theta_{empty}$ $\Theta_{empty}(1 + K_N^{1/2} P_N^{1/2} + K_H^{3/2} P_H^{3/2} + K_{NH_2}^{N/2} P_{NH_2}) = 1$ $\Theta_{empty} = 1/(1 + K_N^{1/2} P_N^{1/2} + K_H^{3/2} P_H^{3/2} + K_{NH_*} P_{NH_*})$ $1 - \Theta_{total} = 1/(1 + K_N^{1/2} P_N^{1/2} + K_H^{3/2} P_H^{3/2} + K_{NH_1} P_{NH_2})$

How to find rate of reaction:

 $r = k \Theta_N \Theta_H^3 \Theta_{NH}$ $r = k^* K_N^{1/2} P_N^{1/2} (1 - \Theta_{total})^* K_H^{3/2} P_H^{3/2} (1 - \Theta_{total})^* K_{NH}^{1/2} P_N^{1/2} (1 - \Theta_{total})$ $r = k^* K_N^{1/2} P_N^{1/2} K_H^{3/2} P_H^{3/2} K_{NH_2}^{1/2} P_N^{1/2} K_{NH_2} P_{NH_2}^{1/2} (1 - \Theta_{total})^5$ Competitive adsorption: Let's say that the NH3 term is more present We can simplify the $(1 - \Theta_{tatal})$ term: Let $K_N P_N, K_H P_H \ll K_{NH_2} P_{NH_2}$ $(1 - \Theta_{total}) = 1/(1 + K_{NH_a}P_{NH_a})$ therefore $\Theta_{empty} = 1/(1 + K_{NH_a}P_{NH_a})$ $r = k^* K_N^{1/2} P_N^{1/2_*} K_H^{3/2} P_H^{3/2_*} K_{NH_a}^{1/2} P_N^{1/2} K_{NH_a} P_{NH_a} (1/(1 + K_{NH_a} P_{NH_a}))^5$

$$r = k^* K_N^{1/2} P_N^{1/2} K_H^{3/2} P_H^{3/2} K_{NH_3}^{1/2} P_N^{1/2} K_{NH_3} P_{NH_3} (1/(1 + K_{NH_3} P_{NH_3}))^5$$

Haber-Bosch Process (flowsheet)

- Steam Reforming Process
- Water-Gas Shift Reaction using PFR or PBR
- 3) CO2 and H2O Removal using PSA
 -) N2 and H2 pass by another PBR
- 5) NH3 exits system and N2 and H2 are recycled

Kinetics Simulation in Desmos

- X and Y axis indicate the concentration of the different components normalized over the concentration of the feed.
- Gray arrows indicate the rate vector, which is modified by the rate law and the stoichiometry of the reactions.
- The red and blue lines indicate PFRs and CSTRs respectively.

Sriram, G. 2024. Kinetics simulation. University of Maryland.]

How to use the Desmos Simulation

$$r_{1}(x, y) = k_{1}e^{-\frac{E_{1}}{R_{c}T}} \frac{K_{P1}p_{P}(K_{H1}p_{H})^{2}}{\left(1 + K_{P1}p_{P} + K_{H1}p_{H} + K_{K1}p_{K} + K_{A1}p_{A}\right)^{3}}$$
$$r_{2}(x, y) = k_{2}e^{-\frac{E_{2}}{R_{c}T}} \frac{K_{P2}p_{P}K_{H2}p_{H}}{\left(1 + K_{P2}p_{P} + K_{H2}p_{H} + K_{K2}p_{K} + K_{A2}p_{A}\right)^{2}}$$

Stoichiometry×
$$r_A(C_A, C_B) = -r_1(C_A, C_B)$$
× $r_B(C_A, C_B) = r_1(C_A, C_B) - r_2(C_A, C_B)$ ×Rate vector slope× $R(C_A, C_B) = \frac{r_B(C_A, C_B)}{r_A(C_A, C_B)}$ ×

- Modify the rate laws and stoichiometry to change the rate field.
- Place PFR and CSTR onto a proper concentration for feed and click run.
- Using the inverse lever arm rule and the lines in the top right, a mixture of the two reactors outputs can be found.

Optimizing in Desmos Simulation

 Using an objective function it is possible to find an optimized point in the PFR and CSTR Curves in order to maximize or minimize certain parameters.

Haber-Bosch Batch Reactor Simulation in MATLAB

Define reaction rates in terms of both species, operating conditions, and the ODE to solve

% Reaction rate, in kmol N2/(m3xs), p in atm, T in K; from Eqn 27.8 of Seider r = @(T, p) 1e4 * exp(-91000 / (R * T)) * p(N2)^0.5 * p(H2)^1.5 _ 1.3e10 * exp(-140000 / (R * T)) * p(NH3);

```
% Reaction rate, in mol NH3/(m3xs), input p in bar, T in K. r = @(T, p) r(T, p / 1.013) * 2 * 1000;
```

```
% Operating conditions: temperature, pressure, initial volume, catalyst loading
T = 600; % K
tf = 2; % Final time
P = 100; % bar
V = R * T / P / 1e5; % m^3/mole ... 1/density
ninit = [0.5 1.5 0]; % Initial moles of N2, H2, NH3
cat = sum(ninit) * V; % Catalyst volume in m^3
```

% ODE for batch reaction: dn/dt dndt = @(t, n) cat * nu * r(T, n / sum(n) * P);

NamSung Wang (2017) Ammonia synthesis via Haber-Bosch process.https://user.eng.umd.edu/~nsw/chbe446

Desmos Graphing Calculator. *Desmos*; Desmos Studio, Inc. Available at https://www.desmos.com/calculator/qrirbg3qqt (accessed Feb 2025).

Vallance, C. Kinetics at Surfaces; University of Oxford. Available at https://vallance.chem.ox.ac.uk/pdfs/KineticsAtSurfaces.pdf (accessed Feb 2025).

Genetic Literacy Project. Fritz Haber and Carl Bosch: The Chemists Who Revolutionized Fertilizer Production, Changing Agriculture Forever. *Genetic Literacy Project*, Jan 29, 2021. Available at

https://geneticliteracyproject.org/2021/01/29/fritz-haber-and-carl-bosch-the-chemis ts-who-revolutionized-fertilizer-production-changing-agriculture-forever/ (accessed Feb 2025).

Hill, C. G., Jr. An Introduction to Chemical Engineering Kinetics & Reactor Design; University of Ulm, 2021. Available at <u>https://himatekkim.ulm.ac.id/id/wp-content/uploads/2021/06/Charles-G.-Hill-Jr-An-I</u> <u>ntroduction-To-Chemical-Engineering-Kinetics-Reactor-Design.pdf</u> (accessed Feb 2025).

U.S. Department of Energy. Hydrogen Fuel Basics. Energy.gov. Available at

https://www.energy.gov/eere/fuelcells/hydrogen-fuel-basics (accessed Feb 2025).

Starr, F. ICI Steam Reformer History; Johnson Matthey, Available at

https://fredstarr.com/wp-content/uploads/ICI-Steam-Reformer-History-Johnson-Ma tthey.pdf (accessed Feb 2025).

Liu, K.; Song, C.; Subramani, V. Water Gas Shift Reaction—A Review. Int. J. Hydrogen Energy 2003, 28 (10), 1103–1113. Available at

https://www.sciencedirect.com/science/article/pii/S0378775303006141 (accessed Feb 2025).

IOP Science. Investigation of Hydrogen Production. *J. Phys.: Conf. Ser.* **2016**, 745 (3), 032147. Available at

IOP Science. Investigation of Hydrogen Production. *J. Phys.: Conf. Ser.* **2016**, 745 (3), 032147. Available at

https://iopscience.iop.org/article/10.1088/1742-6596/745/3/032147/pdf (accessed Feb 2025).

YouTube. Fundamentals of Hydrogen Production. Available at https://www.youtube.com/watch?v=GEvORJhjjBE (accessed Feb 2025).

Wiley Analytical Science. Advances in Chemical Kinetics for Industrial Applications. *Biotechnol. Bioeng.* **2021**, *118* (3), 1300–1315. Available at https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/bit.27230 (accessed Feb 2025).